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AN EXPERIMENTAL STUDY OF THE PROPERTIES OF ANTENNAS

IMMERSED IN CONDUCTING MEDIA
by

Keigo Iizuka and Ronold W. P. King
Cruft Laboratory, Harvard University

Cambridge, Massachusetts

Abstract

Descriptions of the apparatus for measuring both the
properties of the conducting solution in which the antennas
are immersed and the properties of the dipole antennas them -
selves, were given in Scientific Report No. 1 "Apparatus for
the Study of the Properties of Antennas in a Conducting Me -
dium' by the same authors. This report provides measured
results of the driving-point admittance, the amplitude distri-
bution of the current,and the phase distribution of the current
relative to the phase at the driving point for a dipole antenna
when immersed in homogeneous and inhomogeneous condue -
ting media.

Measurements have also been made of the amplitude
distribution and phase distribution of the current for a half -
wave dipole antenna immersed in a stratified medium for va-
rious gradients of the conductivity. The results of these ex-
periments indicate that either an antenna of short electrical
length or a half-wave dipole antenna can be used as a probe
to measure the dielectric constant and conductivity of the me-
dium in which it is immersed. A half-wave dipole antenna
could well be used to detect an inhomogeneity in an extended
medium.

1. Introduction

The properties of dipole antennas when immersed in a conducting me-
dium are currently of interest, not only from theoretical but also from prac -
tical points of view. A knowledge of the characteristics of an antenna im -
mersed in such a medium may have applications in determining the properties

-l
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of ionized gases, in under-water communications and in geophysical explorations,
The studies were made on single antennas of moderate length in a homogeneous
disaipative medium and also in media with properties that were stratified in
layers perpendicular to the antenna.

In homogeneous media, measurements of the driving-point admittance
have been made for a range of values of the ratio ;7-‘— of the medium taking
the electrical height of the antenna fh as a partmete‘i'.o The ratio “a‘
is varied from —Z— 20,0356 to —Z— = 8.8 and the antenna heigh? ph
is varied from ph =601 to 2r at interxfalol of 0.1, The amplitude and phase
distributions of the current have been measured for ph ="/4, %2 ,3"4, = ,
4 w , 3/ 2w, e , and 2r in a homogeneous conducting medium whose con-

; — —_—
ductivity is varied from ey = 0,036 to e =8.8 .

In stratified media, measurements have been made of the amplitude and
phase distributions of the current and of the driving-point admittance for a half-

wave dipole antenna in a tank that is stratified in layers perpendicular to the
antenna by thin nylon separators. The conductivity of the solutions in the layers
was varied linearly with respect to the distance from the driving-point of the
dipole antenna.

II. Experimental Arranlementl

Descriptions of the measuring equipment and the tank for use with homo-
geneous media are in an earlier report.1 A description of the stratification of
the tank follows. The tank was divided into seven layers parallel to the image
plane and consisting of solutions of different conductivity and dielectric con -
stant. Nylon film 0.004" thick was stretched over a plastic frame. Six
such framed nylon sheets were used to divide the tank into seven watertight
compartments. Photographs of the structure and the dimensions of the com-
partments are shown in Figs. 3-21 and 3-22. The layers consist of five
small and two relatively large compartments, The first five are located nearer
the image plane; they have equal dimensions and the thickness of the layer is
2,9 the length of a half-wave dipole antenna. At about one-third .of the dis-
tance between the small compartments and the back wall another nylon sheet
is placed to separate the sixth from the seventh compartment.
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III, Experimental Results

A.  With Homogeneous Medium

Driving-point admittance

The measuring procedure utilizes the height of the antenna and the prop-
erties of the homogeneous solution in which the antenna is immersed as vari-

ables.

The driving-point admittance was measured for the range from fh
= 0.1 to Bh = 2r at intervals of Bh = 0.1 . The properties of the solution were
varied from ¢, =78, 0/wepe, =0.036 to e, =69, O/wepe, =8.8. The
measured results are plotted on the rectangular admittance chart taking the
length of the antenna pBh as a parameter. These rectangular admittance charts
are in Fig. 3-1 through Fig. 3-10 with various €. and 0/we r€o Values.
The values of ¢, and O/we r€o Which belong to the curves are indicated in

the figures.

As a general characteristic of the curves, note that the size of the spiral
curves gets smaller, i. e., the spacing between the neighboring circumferences
becomes smaller and the convergence of the spiral with respect to ph becomes

faster as O/were, is increased.

The point of convergence of the spiral moves from the capacitive region

into the inductive region as the value of 0/we is increased. This may be

réo
better understood from Fig. 3-11 . The change in the admittance of the antenna
W1th an increase m the conductivity of the solution for ph values of 0.3, -4- ,

'Z' Z m, , gn y T, and 2w are shown. In this figure a large spiral curve,

which was measured with the lowest conductivity, is also plotted as a reference.

Starting from the values on the spiral,the admittance values move in
the general direction of higher conductance and larger negative susceptance
as the conductivity is increased. It is interesting to note that all loci except
for antennas shorter than ph = n/2 first meet near the point Y = 28 - j3
millimho which is not far from the characteristic admittance of the line

B -
* ety
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Y = 20. 87 millimho, and then these move together toward the larger values

of conductance and susceptance as the conductivity of the solution is increased
further. The loci from the meeting point on are practically the same regard-
less of the lengths of the antenna; the conductivity of the solution at the meeting
point is O/weye, = 1.06 for all the antenna lengths, This behavior is observed
because in the solutions with the higher conductivities most of the charges leak
away from the antenna into the solutionand the magnitude of the current greatly
decreases outward from the driving point. The contribution by the current
farther than a certain Bz value to the driving-point admittance is negligible.
This certain point may be set to be near ph .= /2 since the antennas shorter

than this length do not quite follow the same loci.

The measured admittance of an antenna with smaller radius and without
the penton cover (Fig. 2-29 of Scientific Report No. 1), follows practically the
same kind of locus. The broken line in Fig. 3-11 represents the results with
the thinner antenna. The above-mentioned facts can be better seen by replot- .
ting the admittance in rectangular coordinates as a function of fh. The conduct-
ance G as a function of the antenna length Bh is plotted in Fig. 3-12; the cor-
responding susceptance B in Fig. 3-13 . It is noted that as the value of the

parameter o/we increases the oscillations in the amplitude of both the con-

€
ductance and therstfsceptance curves become flatter and both G and B go into
a region of monotonic increase where the effect of the conductivity of the solution
in which the driving point is immersed affects the admittance more than does the
length of the antenna. The resonance condition disappears when the length of t'!he
antenna exceeds ph = 7 in the solution of higher conductivity since the suscep-
tance stays in the inductive region. It should also be noticed that the resonance
points shift toward the origin as 0/we o is increased more than would be ex-
pected from the increase in the value of B (which is a function of 0/we o Te-
ferring to Eq. 1.3 of Scientific Report No. 1.

The change in the driving-point admittance of an antenna of fixed
length with an increase in the conductivity of the solution may be discussed
with reference to Fig. 3-11. As was mentioned before, the admittances of the
antennas longer than Bh = /2 first move toward the common junction point

and then all go to higher G and IB | values together. By examining the loci
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closely, their behavior can be summarized in the following two statements :

(1) The loci almost without exception select the most direct path to

the common meeting point.

(2) As a consequence of (l), the shapes of the driving-point admittance
curves for a fixed wavelength with respect to the conductivity of the solution

may be classified as follows :

a) For antenna lengths lying below and to the right of the meet-
ing point on the chart, both G and |B|curves have minima

i.e.,

% <Bh.<1.8
both G and |B| have minima.

4.6< ph < 5.0

B) For antenna lengths lying below and to the left of the meeting

point G does not have minima while |B| does
1.9« phc 2.6
5.1< Bh < 5.7

G does not have minima
|B/has minima .

c) For antenna lengths lying above and to the left of the meeting
point neither G nor |B| has minima

-

0.1< ph < 0.9
2.7< ph < 4.0 } neither G nor |B|has minima.
5.8< ph < 2«

d) For antenna lengths lying above and to the right of the meet-

ing point G has minima while B does not have minima

1.0< phc 1.3 G has minima; B does not

4.1< ph < 4. 5J have minima.

It may be said that from the viewpoint of the application of the dipole
antenna to the measurement of the properties of the medium, it might be bet-

ter to select an antenna length which does not have extrema, for if the curve
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has extrema it has more than one value of 0 /we o corresponding to the
same driving-point conductance (or susceptance). The antenna lengths in the
group (c) seem to be most suitable for this type of application.

The verification of the above classification can be best seen from the
curve of the driving-point conductance with respect to the value of 0/we ‘o
in Fig. 3-14 and the driving-point susceptance with respect to the value of
o/we ¢ in Fig. 3-15. Here the experimental result with a short antenna
(Bh = 0.3) is compared with the available theoretical results L . Even though
it is not quite possible to compare the measured value with the numerically
calculated results due to the difference in 2 and the presence of the penton
tubing on the antenna, the general shape of both experimental and theoretical
curves are quite alike. The conductance curve increases in a fairly linear
manner with an increase in the conductivity; it is concave upwards in the region
of high conductivities. The susceptance curve decreases relatively slowly
with an increase in conductivity and changes its sign at higher conductivities

as the theoretical result does.

Current Distribution

The amplitude and relative phase distributions of the current were
measured for antennas with Bh = nw/4, n/2, 31/4 , and w in the solutions
€. =78 cr/werco = 0,036, €. =78 o/wereo =0.35, ¢ =77 O/werto =1.06,

€. = 74 c/ureo =2.6, €. = 69 U/wereo = 8.8. The measured results are

plotted in Figs. 3-16 through. 3-19 . The amplitude of the current along

the antenna is normalized to the value of Y = p(wf)-)l ma/volt. The phase of

the current along the antenna is referred to 0,(0) = tan"! g- (=tan'1 I: o) ).

It is observed from this set of curves that for all lengths of antenna
the current distribution nearer the tip of the antenna begins first to change
from concave outward to concave inward, and then that nearer the base of
the antenna does the same as 0/we rfo is increased. The shape of I'(cur-
rent component in phase with the driving-point voltage) in general suffers more
from this change of curvature than that of I' (current component 90 degrees out
of phase with the driving-point voltage) with an increase in 0/we _¢ . With

ro
an increase in conductivity the curve of OI becomes straighter and the shape
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is also noticed that the slope of the OI curve as a function of the position along

of the curve becomes more like that of the traveling wave linear antenna

the antenna becomes steeper just as if the electrical length of the antenna were
increased, with an increase .in conductivity of the solution. This trend coincides
with the fact discussed in the previous section that the curves of the driving -
point admittance as a function of Bh shift as if the length of the antenna became
longer than the physical dimension (see Figs. 3-12 through 3-13) with an in -

crease in o/wereo value,

As for a short antenna, its current distribution becomes very close to the
shape of a triangle at high conductivities of the solution. The theoretical current
distribution for an antenna with Bh = /2 is available in references 1 and 3 and
the shapes of both theoretical and measured curves are quite alike,

The amplitude of the current nearer the tip of antennas longer than ph =
w/2 usually becomes very small for values of ¢/we o that are larger than
unity in comparison with that at the base of the antenna. It may be added that
this fact contributes to the existence of the meeting point in the admittance chart
discussed in the previous section.

In order to make a closer comparison between the current distribution of

(*]

the antenna of the same height with different values, the current distri-

bution curves were replotted in Fig. 3-19(a) amf Fig. 3-19(b).

It is intTresting to note that the absolute values of the current near pz =

are aﬁwaiy 20 to 25 ™2/V , that is, for all lengths of the antenna the
near fz

urrent = Z' is approxxmately independent of the conductivity of the

solution in the range from =0.036 to 8.8 . A picture of a space model

of the current with various o/we € values is shown in Fig. 3-20.

B. With Inhomopneous Medium

Driving-Point Admittance

Before any measurements were made the effect of the presence of the
films on the driving-point admittance was determined. The driving-point admit-

tance of a half-wave dipole immersed in a homogeneous solution with ¢ - 78 and
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o/ we o = 0.036 is Y = 55.31 - j41.95 millimho, while that of the half-wave di-
pole immersed in the same solution but with the presence of partition films is
Y = 52.70 - j38.8 millimho. The difference is less than 7 ~ 8 percent and the
effect of the presence of the film on the driving-point admittance is small.

The driving-point admittance was measured for various combinations of
b and S in

PR = b+Sx (xincm) . (3.1)
ro

The origin of the coordinates is taken at the driving-point of the dipole antenna
and the x-axis is taken along the antenna, The conductivity of the solution is
changed stepwise and the geometric centers of each layer follow the distribution
expressed by Eq. 3.1 . Three different values of +S were taken for each of
the four different b values totaling twelve different combinations of b and +8S.

Besides these, two -S values were also taken.

b S/cm b S/em
0 0.036 0 8 | 0.70 0.096
1 0.036 0.032 9 0.70 0.16
2 0.036 0.096 10 1. 06 0.032
3 0.036 0.16 11 1. 06 0.096
4 0.18 0.032 12 1.06 0.16
5 0.18 0.096 13 0.30 -0.032
6 0.18 0.16 14 0.90 -0.096
7 0.70 0.032

Table 3-11 Combinations of b and S

The measured admittances with these fourteen combinations were plotted
interms of b - S coordinates and equi-conductance and equi-susceptance con-
tours were drawn as shown in Fig. 3-23 and Fig. 3-24 respectively. The
equi-admittance curves are rather irregular and it is a hard task to give a

generally significant description.
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The conductance and the absolute value of susceptance both have the largest
value at the origin; both of these values are largest with a homogeneous me -
dium of the lowest conductivity and any change from homogeneity gives rise

to a decrease in both the driving-point conductance and in the absolute value
of the susceptance. It may be added that this property of a half-wave dipole
antenna could well be applied to the detection of an inhomogeneity in a medium
{(or material).

For a fixed value of b, the conductance and the absolute value of the
susceptance always decrease with an increase in S values, (The reverse
statement is not quite true.) As a more general trend, the direction of the
contours of constant conductance more or less follow the broken lines in the
figures, This means that for the smaller values of b, a change in S has
more effect on the conductance than does a change in b, For the smaller
values of S the situation is reversed and a change in b has more effect

on the conductance than does a change in S .

Current Distribution

The amplitude and phase distributions of the current were measured
for a half-wave dipole antenna in the stratified medium with the same con -
figurations mentioned in the preceding section. The combination of b and
S values is the same as is tabulated in Table 3-11. The measured results
are normalized in the same way as mentioned above and are plofted in Figs.
3-25 through 3-29. The conductivity associated with distribution of current
is indicated in the same figures. For better comparison the curves for the
same b values are also plotted on the graphs. It is observed that the am-
plitude of the current |I|/V along the antenna with larger S values for a
fixed b value is always smaller than the current distribution with smaller
S values. The in-phase component I'/V and quadrature component I'/V
of the current also follow this general rule. The general shapes of the dis-
tributions of current, however, stay practically the same for all of the

various combinations of b and S.

With an increase in the value of S for a fixed b, the slope of the

curve OI with respect to the position along the antenna becomes steeper.
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It is more difficult to make a general statement about changes in S for a
fixed value of b, but with some exceptions the above-mentioned statement

holds if b is substituted for S and vice versa.

Conclusions

The experimental measurements were made with both homogeneous
and inhomogeneous media.

A. Results with a Homogeneous Medium

(1) The driving-point admittance was measured for the range from
Bh = 0.1 to ph = 2r at intervals of ph = 0.1 . The properties of the solu-

tion were varied from ¢_ =78 o'/wereo = 0.036 to €. = 69 c/wereo=8.8.

A general characteristic of the curves shows that not only the size of the
spiral curves on the admittance chart becomes smaller but also the conver-
gence of the spiral with respect to ph becomes faster as ¢o/we o is in -
creased.

(2) The point of convergence of the spiral moves from the capacitive

region into the inductive region with an increase in g/we o °

(3) All loci of the admittance with an increase in g/we o except
for antennas shorter than ph = v/2 first meet near the point of the character-
istic admittance of the coaxial line. The loci from the meeting point on are
practically the same regardless of the length of the antenna. From this fact
the following generalized statements have been established :

(a) The loci almost without exception select the shortest
path to the meeting point.

(b) As a consequence of (a) the shape of the driving-
point admittance with respect to the conductivity of
the solution could be classified in four groups de -
pending on the length of the antenna.

(4) The condition of resonance does not occur when the length of the

antenna exceeds ph = 7 in the solution of higher conductivities,

(5) The resonance points, if any, shift toward the origin as ¢g/we o

is increased.
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(6) Both the distribution of current and the admittance for antennas
with fh = 0.3 and ph = w/2 are in fair agreement with the theoretical re -
sults obtained by R. W, P. King and C. W, Harrison.

(7) The current distributions change from concave outward to concave

ipward as 0O/un o is increased.

(8) The shape of the in-phase component of current, in general, ex -
hibits a greater change in curvature than does the shape of the quadrature
component.

(9) The curve of the phase 0, becomes more like that of a traveling
wave antenna with an increase in conductivity.

(10) The current distributions on short antennas become very close to
the shape of a triangle at high conductivity of the solution.

B. Results with an Inhomogeneous Medium

(1) Differences in admittance with and without the partition film were
measured to be less than 7~ 8 percent.

(2) The driving-point admittance was measured for various combi -
nations of b and S values of the conductivity where ¢/we elo =D +8x.

(3) Both conductance and susceptance have the largest value at the
origin of the b - 8 equi-admittance curves. This property might be ap -
plied to the detection of an inhomogeneity in a medium.

(4) For a fixed value of b , the values of G and |B| always de -
crease with an increase in S values.

(5) For smaller values of b, a change in the S value has a greater
effect on the admittance than a change in the b value, and for smaller values
of S, the change in b has a greater effect on the admittance than a change
in 8.

(6) Values of |I|/V,I"/V, and I'/V along the antenna with larger
S values (for a fixed b) are smaller than those with smaller S values.
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(7) The curve of 0 hasa steeper slope with larger S values for a fixed b value.

@
IV. Miscellaneous

1. Change of Admittance Due to the Local Change of the Properties of Medium.

If the dipole antenna is used as a probe to determine the local properties
of a medium or the spatial distribution of the properties of a medium, it is de -
sirable to know the distance beyond which a change in the properties of the me -
dium has no effect on the driving-point admittance of the antenna. Accordingly,
the driving-point admittance of a half-wave dipole was measured as a function of
the conductivity of a part of the medium in the suitably partitioned tank which has
already been described in the previous section (see Fig3-22).

The geometric distribution of the conductivity of the partitioned medium
and the corresponding measured driving-point admittances are all listed in Fig.
4 -1. The driving-point admittance of the antenna in a medium which is homo -
geneous with O _ =0.036 except for the presence of six partitioning films

was measured totbg Y =53.2 - j36.7 (millimhos).

The deviations AY of the driving-point admittance from the above val-
ue for the homogeneous case are also shown in the figure. The conductivities
of the solution in the several compartments are in Table 4- 1.

Compart-

ent No| No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7
Fig. No.
a 1.76
b 0. 665 1.76
c 0. 271 0.665 1.76
d 0. 271 0. 665 1.94
e 0. 271 0. 841 1.94
f 0. 447 0. 841 1.94
g 0.385 0. 447 0. 841 1.94
h 0.326 0.385 0.447 0. 841 1.94
i 0. 266 0.326 0.385 0. 447 0. 841 1.94
j 0. 206 0.268 0.326 0.385 0. 447 0. 841 1,94
Blank Columns are S_ = 0.036
r¢o

Table 4-1 Distribution of “o — in the Compartments.
r€o
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The conductivity of the solution in the seventh compartment (which is the
farthest from the antenna - its boundary with the sixth compartment is about 3/ 4
A away), was increased gradually until a change in the admittance of the anten-
na was observed. The conductivities of all other compartments were kept at
mg.‘_ = 0.036, (see Fig. 4-1(a) ). The conductivity of compartment No. 7, at
whicﬁ the admittance became apparent was “O‘ = 1.76 . This initial change

r¢o
occurred in the conductance, not in the susceptance, that is AY = 2.1 -j0.0 .

Next, the conductivity of the solution in the sixth compartment was in -
creased to uc‘ = 0.665. The conductivity of the seventh compartment was

r
kept the same as?n case (a) . This time slight increases in both conductance and
susceptance were detected simultaneously, i.e., 8Y = 2.6 + j0.42 .

In case (c) the conductivity of the sixth and the seventh compartments
were kept as in case (b) and the conductivity of the fifth compartment alone was
raised to &%; = 0.27 . The observed change in admittance is rather large,
especially that of susceptance. It can be seen that as soon as a change is made
in the conductivity of a compartment which contains a part of the antenna in di -
rect contact with the solution, the admittance of the antenna is affected greatly.
(Note that the boundary between the fifth and sixth compartments is only )‘/40
away from the tip of the antenna.)

When the conductivity in the seventh compartment was further increased

(o]
e pt o
ratio -u—ﬂ‘— of the solution in the sixth compartment was increased from

to

= 1.94 (see (d) ), no change in admittance was observed. When the

0.665 ini:ac’le (d) to 0.841 in case (e) with no change in the other compart-
ments, a slight difference in conductance was observed but no change in suscep -
tance. It appears that when a part of the antenna is in direct contact with the
conducting solution and the conduction current from this part into the solution is
not greatly disturbed, the antenna becomes quite insensitive to changes in the
conductivity of the solution which is not in direct contact with the antenna.

. The conductivity of the fifth compartment was almost doubled to obtain

the conditions of case (f) from those of case (e) . As a result AG began to de-
crease, AB to increase. In the cases (g), (h), and (i), the conductivities in the
smallest compartments were increased successively until the final configuration
(j) was reached for which the conductivity of the solution increases stepwise from
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layer to layer, and the geometric centers of each layer follow the straight line
characterized by b =0.206 and S =0.032 in the formula u—an'o =b + Sx
(x in cm). It is to be noted that AG decreases progressively nfd 0B pro-
gressively increases.

Further conclusions are not possible from the available experimental
data, so that a more extensive systematic study is indicated.

2. Stratification of the Medium to Achieve a Gradient of the Dielectric Constant.

Acetonitrile CH,CN was mixed with water in order to vary the dielec-
tric constant of the solutions in the several compartments of the tank. A de-

scription of the properties of CH3CN are found in Scientific Report No. 1.4

Since acetonitrile is flammable (flash point is 55°F - approximately that
of methyl alcohol) and toxic (maximum allowable concentration for continuous
exposure - 8 hours per day, five days per week - is 20 parts of acetonitrile
vapor per million parts of air.s) it was necessary to take special precautions in
handling the solution. A platform (see Fig.4-2) about two feet above the top
surface of the tank was constructed outside the room so that the transfer of
acetonitrile from the drum to the tank could be accomplished by gravity feed.
The gravity feed was preferred in order to avoid any possible ignition hazard

with the electric motor-driven pump.

Metal hoses were used in order to avoid a possible ignition hazard from
static electricity generated by the flow of the non-conducting liquid from the
drum through pipes to the tank.

In order that the concentration of acetonitrile could be kept below 20 ppm
in the experimenters' breathing area, an enclosing hood (Fig. 4-3) was installed
over the tank. The lower front edge of the cover is cut out for the air intake;
the back of the hood is attached to a four-inch exhaust pipe which is connected to
a 1/3 HP explosion-proof motor that blows the fumes from the surface of the
tank to the outdoors.

Experimental data are available for only one configuration of a stratified
medium into layers with different dielectric constants. It is represented in
Table 4-2 and Fig. 4-4.



FIG. 4-2

FIG. 4-3
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Table 4 - 2
Compartment No. Relative Dielectric Constant

1 38.5

2 41.0

3 42.2

4 44.0

5 46.3

6 57.8

7 78.0
The current distributions on a half-wave antenna when immersed in the stratified
medium and in a homogeneous medium with e ¢ =78 and g = 0.036 are
also shown in Fig. 4-4. The length h of the antenna in the stratified medium was
one-quarter of a wavelength in the medium of ¢, =78 and “"zio = 0036. The

current along the antenna is normalized in the same way as in the previous section.

Since data for only one case are available, it is not possible to draw
definitive conclusions. The shape of the current distribution for the antenna in
the stratified medium is more triangular than sinusoidal. With reference to
Fig. 3-19' , it is clear that the distribution of current along the antenna in the
stratified medium behaves more like that along an antenna in a dissipationless
medium with pgh =E than with gh =% . The curve of the angle 0I is seen
to be positive as is that for 0 when ph =£- in a medium with ¢, =s78 . The

measured driving-point admittance in this stratified case is
Y = 91.26 + j34.23.

With reference to the Figs. 3-12 and 3-13, this admittance is seen to be rather
close to that of an antenna in a dissipationless medium with gh = 1,2 in both
real and imaginary parts. This is just as if the wavelength in the medium had
been increased by a factor ’\L'fé = -{—g—g = 1.31 or g =1.31\9g, oras

if the antenna whose electrical length ph is -; in a solution with ¢, = 78
were immersed in a homogeneous dielectric medium whose dielectric constant

. _ A78 .2 _
is ‘eff°78(‘XT) = 45,5
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3. Driving-point Admittance of a Dipole Antenna Coated with a Cylinder of Squire
Cross Section.

A wooden rectangular cylinder was installed across the tank from the
image plane to the back wall of the tank. The antenna was placed along the
center line of the rectangular cylinder.

The cylinder was filled with the solution of acetonitrile (er = 38.5);
outside the cylinder was air. The cross section of the cylinder was square with

the side dimension XE = 0.295 and thickness of the wooden wall % =0.0107 .

The driving-point admittance was measured for the range from -2% h =
0.35 to -xlh = 4,41 where )\ is the wavelength inside a homogeneous
solution with €. = 38.5. The measured results are plotted in Fig. 4-5 on a
rectangular admittance chart with the length of the antenna %1 h as the param-
eter . The resonant length is ph = 2,53 which is about one and a half times
longer than when the antenna is immersed in an infinite homogeneous medium
with e =38.5.

The diameter of the spiral is about 45 millimhos; that is, about three
times as large as that for free space and about one-half that of the antenna im-
mersed in a homogeneous medium of ¢ . 38.5.

The spirals of admittance for the case of free space ( €. = 1) and in a
homogeneous dielectric with ¢ r " 38.5 are shown in broken lines in the same
figure,

Since the size of the present image plane may be somewhat small for
accurate measurements when the medium is dissipationless, the results should
not be regarded as definitive.

More complete and more systematic experiments should follow the pres-
ent preliminary and exploratory series.
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